
1

Anomaly Detection and Diagnosis Algorithms
for Discrete Symbol Sequences with

Applications to Airline Safety
Suratna Budalakoti,Member, IEEE,Ashok N. Srivastava,Member, IEEE,

Matthew E. Otey,Member, IEEE

The final draft of this work was submitted
for publication on August 22, 2008 to the IEEE
Transactions on Systems Man and Cybernetics,
Part C

Abstract—We present a set of novel algorithms which we
call sequenceMinerthat detect and characterize anomalies
in large sets of high-dimensional symbol sequences that
arise from recordings of switch sensors in the cockpits of
commercial airliners. While the algorithms we present are
general and domain-independent, we focus on a specific
problem that is critical to determining the system-wide
health of a fleet of aircraft. The approach taken uses
unsupervised clustering of sequences using the normalized
length of the longest common subsequence (nLCS) as a
similarity measure, followed by detailed outlier analysisto
detect anomalies. In this method, an outlier sequence is
defined as a sequence that is far away from the cluster
centre. We present new algorithms for outlier analysis that
provide comprehensible indicators as to why a particular
sequence is deemed to be an outlier. The algorithms provide
a coherent description to an analyst of the anomalies in the
sequence when compared to more normal sequences. In the
final section of the paper we demonstrate the effectiveness
of sequenceMiner for anomaly detection on a real set of
discrete sequence data from a fleet of commercial airliners.
We show that sequenceMiner discovers actionable and
operationally significant safety events. We also compare
our innovations with standard Hidden Markov Models, and
show that our methods are superior.1

Index Terms—Discrete symbols, sequences, anomaly de-
tection, fault detection, diagnosis, integrated system health
management

1S. Budalakoti (suratna@mail.utexas.edu) is currently with the Uni-
versity of Texas, Austin. This work was performed while he was a
student at the University of California Santa Cruz. A. N. Srivastava
(Ashok.N.Srivastava@nasa.gov) is with the Intelligent Systems Divi-
sion at NASA Ames Research Center. Matt Otey (otey@google.com)
is currently with Google. This work was perfomed while he was
with Mission Control Technologies. This work was supportedby the
NASA Aviation Safety Program, Integrated Vehicle Health Manage-
ment project.

I. I NTRODUCTION

A comprehensive approach to the health management
of the complex air transportation system requires the
ability to analyze large sets of discrete sequences for
anomalies. These discrete sequences can arise from
sensors or actuators in the system or from actions of
multiple humans in the system. In the latter case, for
example, a pilot and co-pilot activates a sequence of
switches inside the cockpit to help maneuver the airplane
for a safe landing.

This paper addresses the problem of identifying
anomalous switching events given a large set of them.
This paper overviewssequenceMiner, a novel set of
fast, scalable algorithms developed to discover anomalies
in large sets of sequences of discrete symbols. We
compare the results of the new algorithms to standard
implementations of Hidden Markov Models.

More formally, we consider the problem of finding
anomalies in a setS = {S1, S2, ..., Sn} of n discrete
sequences. We assume all symbols are drawn from a
finite but large alphabetA = {a1, a2, . . . , aM} with M

symbols, and that sequenceSi has lengthli. The length
of a sequence is simply the number of characters in the
sequence.

We divide the problem of finding anomalies in se-
quences into two parts:

1) Anomaly Detection: Given a set of sequencesS,
identify anomalous sequences, that is, sequences
that are considerably different from the other
sequences inS.

2) Anomaly Characterization: For a sequenceSi

in set S that is already identified as anomalous,
describe the reasons whySi was, or should be,
identified as anomalous.

These two problems address two different levels of
granularity: the first problem is to identify anomalous

sequences, while the latter task is to identify anomalies
within sequences. This formulation of the problem is
general and independent of any specific domain. Thus,
the resulting algorithms are general in their scope.

We have built this methodology to address a key
question in the aviation safety domain. We assume that
we are given a set of sequences that correspond ton

landings of a specific aircraft make and model at a spe-
cific airport. The symbols that are recorded correspond
to the switches in the cockpit of the airplane. As the pilot
undergoes maneuvers to land the airplane, he or she flips
switches and manipulates other control mechanisms. The
sequence of switches that a pilot flips during the course
of the landing phase of the flight corresponds to the
sequenceSi. Notice that in this scenario the duration
of the landing phase can vary from flight to flight and
not all switches in the setA need to be flipped in
each flight. Therefore, the sequence length is variable,
as is the set of symbols that appear in a given flight.
A recent paper [1] discusses the domain problem in
more detail and elucidates some of the difficulties in
addressing it using standard methods. An example of
the kind of anomalies the system targets for detection are
mode awareness problems, such as confusion about the
current state of cockpit automation. In our application,
we are analyzing a set of data that arises from a fleet of
commercial aircraft, wheren ≈ 8000, M ≈ 1100, and
li varies from about100 to over10, 000.

The nature of this application domain requires that
the algorithm work under several key constraints given
a fixed data setS. We require that the system be:

• Unique The system should find a unique solution.

• RepeatableThe system must provide a repeatable
solution. Thus, each time the system is run it
should identify exactly the same set of outliers.

• Comprehensible If the system identifies a set of
outliers, it must also generate an explanation as to
why the sequences were called outliers.

• Robust The performance of the system should not
be critically dependent on the quality and amount
of expert input. The initial solution should be as
off-the-shelf as possible.

• Scalable The system performance should not
substantially degrade as the number of sequences
increases. Thus, the complexity of the algorithm
must be better than anO(n2) computation.

NASA developed a distributed archive of flight-
recorded data retained at seven participating airlines. The
airlines are currently adding over 100,000 flights per
month to this archive. The archive currently has over
1,000,000 flights. This national archive was transferred
to the FAA in September 2007 and is expected to be used
to study events and trends in the performance of the air
transportation system from the system-wide perspective
across airlines. For the algorithms to gain adoption in
the aviation safety community, the uniqueness, repeata-
bility, comprehensibility, robustness, and scalability of
the solution are critical for safety analysis. Algorithms or
methods that do not meet these criteria are less desirable.
The set of algorithms described here can be used for
studying a variety of safety related issues, including
change-in-runway maneuvers, mode confusion, and pilot
fatigue issues.

We consider this work to be an important extension
to Integrated System Health Management (ISHM) [4]
capabilities for aircraft systems as the goal is to evaluate
the overall system health of a given class of aircraft at
a particular destination.

II. BACKGROUND AND RELATED WORK

There are a number of data analysis problems where
the data set consists of sequences of discrete symbols,
and the sequential nature of the data is important to the
analysis. The discrete symbols may represent:

• commands and calls to a system, such as a computer
network [2]

• sequences of transactions, such as data from online
banking transactions and supermarket purchase data
[3]

• biological information, such as gene protein data
and medical events [5][6]

• sensor recordings from machines, such as discrete
sensors in aircraft [7]

• online navigation patterns from website click stream
data [8]

• discretized time series data from astronomical or
geological data [9]

The most common methods of analyzing sequential
data are based on unsupervised learning algorithms such
as clustering, followed by anomaly detection. Anomaly
characterization is usually not analyzed formally as a
separate problem, though some approaches to anomaly
detection are more amenable to a subsequent step of
anomaly characterization than others. Most clustering
and anomaly detection in sequential data can be per-
formed using two classes of methods [10] known as

2

parametricor model-based approaches anddiscrimina-
tive approaches. We briefly describe these approaches in
the next two sections and provide a discussion of their
respective advantages and disadvantages.

A. Parametric and Model-based Approaches

A parametric or model-based clustering approach
learns a generative model from the data. This model
typically has a formal mathematical structure and is
parameterized by a set of parametersΘ. The most
natural and commonly used models for sequential data
are Hidden Markov Models (HMMs) [11].

Hidden Markov Models are a natural parametric ap-
proach for modeling sequential data. In his oft-cited
paper, Rabiner [11] gives an excellent overview of the
model and its associated learning algorithms, which we
summarize here. The HMM is parameterized by the
tuple Θ = (N, M, A, π, B) (this notation is derived
from Rabiner’s paper, and the symbolM has a different
meaning from that defined in Section 1).N is the number
of states in the model.M is the number of symbols
generated by each state.A is an N × N matrix of
transition probabilities whereAij is the probability of
transition from statej to statei. π is an N × 1 vector
of initial state probabilities. FinallyB is an N × M

matrix that gives the probability of observing a particular
symbol given that the system is in one of theN states.

Rabiner gives the following intuitive example of se-
quences generated from HMMs. Suppose that someone
is givenN urns, each containing a different distribution
of M colored balls. Suppose that he/she then chooses
the first urn (representing the first state) according to
the probability distributionπ, and then draws a ball out
of the the chosen urn, notes the color of the ball, and
replaces it in the urn. Then, according to the transition
matrix A, the person chooses the next urn, draws a ball,
and notes the color. If this process is repeatedT times,
the resulting string of colors would represent a sequence
generated from a Hidden Markov Model. To address the
problem in this paper with a Hidden Markov Model, one
would need to learn the parametersΘ = (N, M, A, π, B)
given a set of sequences. Once the parameters of an
HMM have been learned, we can compute numerous
important quantities, such as the probability of observing
a new sequence and the most likely sequence using the
standard algorithms discussed in [11].

Parametric approaches such as HMMs are well-
researched and theoretically well-motivated. They are
interpretable, and are known to outperform other ap-
proaches for certain anomaly detection tasks [13]. An-
other advantage of these approaches is that they provide

an interpretable model for the data. Once the parameters
Θ are learned the resulting model can be interpreted in
numerous ways. For example, suppose we are trying
to detect anomalies using an HMM in a data set of
sequences. If we discover that a particular sequence
has been assigned a low probability by the HMM, one
can study the transition matrixA in order to determine
which state transitions were instrumental in reducing
the likelihood of the sequence. However, HMM based
approaches suffer from a number of drawbacks that
violate the requirements of the research topic of this
paper, namely that they often do not scale to real
life data sets [10], and that the training may require
significant manual intervention, experience with the data,
and judicious selection of the model, the parameters, and
initialization values of the parameters [11][12].

In this paper, we characterize the scalability of HMMs
and their sensitivity to initial conditions. In the absence
of sufficient input from domain experts, the training
phase may result in the system converging to a local
minimum. While some variance in the results may be
acceptable, in the worst case, separate runs on the
same data set may result in the system converging to
substantially different minima, resulting in substantially
different anomalies being flagged each time. This might
undermine the confidence of the end-users in the results
given by the system. In a later section of this paper,
we demonstrate the use of the HMMs on the problem
domain discussed in this paper and compare it to the
methods that we develop here.

B. Discriminative approaches

Complementary to the parametric approach are the so-
called discriminative approaches, which rely on a sim-
ilarity function K(Si, Sj) that measures the similarity
between two sequences. Once a similarity functionK is
established, most clustering methods work by allocating
sequences to one ofC possible clusters in such a way
that the within-cluster similarity is maximized, while
the between-cluster similarity is minimized. There are
a multitude of algorithms to accomplish this task. Hay
et al. [8] and Banerjee et al. [14] discuss traditional
clustering methods based on the use of a similarity
measure. The most common similarity measures used for
sequences are the edit or Levenshtein distance [15], and
the length of the longest common subsequence (LCS)
[16]. For anomaly detection, after clustering is com-
pleted, the sequences which have low similarity scores
when compared to other sequences may be flagged as
anomalous. This implicitly assumes that the clusters that
are found are stable, that is to say, that the inter-run

3

reliability of the clustering is high. In the event that this
assumption is violated, one clustering run may indicate a
set of anomalies which are not corroborated by another
subsequent run.

The chief advantage of discriminative approaches lies
in their scalability. With data sets consisting of a large
number of sequences, or those that have long sequences,
discriminative approaches are often the only option.
However, the significant disadvantage of discriminative
approaches is the comparative lack of interpretability.
While these algorithms can be used to find anomalous
sequences, they provide no clues on how to interpret the
anomalies. The results need to be interpreted manually
by experts, which can have high overhead costs and may
result in a highly subjective analysis.

Algorithms for discriminative clustering of sequential
data can fall into one of the following categories.

1) Graph-based clustering[14][17]: These methods
perform either agglomerative or partitional clus-
tering.

2) Representative sequence based clustering ap-
proaches[2]: A representative sequence, usually
the sequence with the highest average similarity
to other sequences in its cluster, is chosen during
each iteration.

3) Indirect Clustering[18]: A set of features is ex-
tracted from the sequences. The results depend
greatly on the features extracted.

Another approach is that of using classifiers to detect
anomalies, such as is done by Szymanski and Zhang
[19] and Evangelista et al. [20]. In this approach they
examine sequences of Unix user commands by finding
dominant patterns in sequences, replacing them with
symbols, and then recursively finding the next set of
dominant patterns, et cetera. They then extract statistical
features describing these re-encoded strings and use a
support vector machine to discriminate between normal
sequences and intrusion sequences.

III. O UR APPROACH

We use a discriminative approach for the task of
anomaly detection. This gives us the traditional ad-
vantage of scalability provided by these approaches.
We develop new algorithms for the task of anomaly
characterization to improve the interpretability of the
methods.

To further improve the speed and scalability, we use a
randomized clusteringbased approach, which is a novel
method for analyzing large repositories of sequential
data. In randomized clustering we search for medoids
that represent a randomly chosen region of the entire data

set. The search space is restricted to reduce the compu-
tational expense. The most common randomized algo-
rithms are CLARA [21] and CLARANS [22]. Though
these algorithms were initially designed for spatial data
and are generally used for very large data sets we find
them to be very useful for clustering sequential data sets
because they do not require the data to be embedded
in a vector space. Moreover, they attempt to minimize
the number of comparisons between data points. This
is important even for medium-sized sequential data sets
due to the potential ofO(n2) computation (wheren is
the number of sequences in the dataset). We prefer them
to density-based algorithms such as DBSCAN [23] and
LOF [24] for the same reason.

Our use of randomized clustering algorithms may con-
flict with our uniquenessandrepeatabilityrequirements,
but we note that if one were willing to sacrifice speed,
one could substitute a longer running deterministic clus-
tering algorithm such as hierarchical clustering for the
randomized clustering algorithm. In any case, given a
clustering of sequences, no matter how those clusters
were derived, our anomaly characterization techniques
are deterministic and so meet ouruniquenessand re-
peatability requirements.

The approach described in this paper is to create a
set of clusters using the length of the longest com-
mon subsequence similarity measure and then identify
anomalous sequences as those that have low average
similarities to the clusters that were discovered. We then
develop a principled approach to the problem of anomaly
characterization based on this similarity measure. The
capability to characterize the identified anomaly is key
to enable decision makers to understand the nature of
the anomaly. The main steps of the approach are the
following:

1) Cluster the sequences into groups using the nor-
malized longest common subsequence (weighted
edit distance metric) as the similarity measure. The
clustering algorithm we use is the randomized k-
medoids clustering algorithm CLARA [21].

2) For each cluster, rank order the sequences in
increasing order based on their similarity score
with the cluster medoid.

3) Identify a certain percentage of the lowest scoring
sequences as anomalies.

4) Identify the regions in the most anomalous se-
quences that deviate most compared to the other
sequences in the cluster.

The next section describes the longest common subse-
quence similarity measure, which is key to the clustering
and anomaly detection algorithms discussed in this pa-

4

per.

A. Longest Common Subsequence

The longest common subsequence(LCS) is a popular
measure in the string analysis and intrusion detection
communities. We use the normalized length of the
longest common subsequence (nLCS) as the similarity
measure for comparing two sequences. Given two se-
quencesX andY of lengthslX and lY respectively, we
calculate thenLCS(X, Y) by the formula:

nLCS(X, Y) =
|LCS(X, Y)|√

lX lY
(1)

In order to understand this formula, we begin with a
few definitions. Given two sequencesX andZ, Z is a
subsequence ofX if removing some symbols fromX
will produce Z. Z is a common subsequence of two
sequencesX andY if Z is a subsequence ofX andY .

The longest such subsequence betweenX and Y is
called the longest common subsequence and is denoted
asLCS(X, Y). We represent the length ofLCS(X, Y)
as |LCS(X, Y)|. The length of the LCS is a very effec-
tive measure because it measures similarity between two
sequences without restricting itself to a location-based
one-to-one match. The longest common subsequence can
be seen as a special type of edit distance. Given two
sequences, the edit distance between them is defined
as the number of operations required to transform one
sequence to another, multiplied by the cost of each
operation. The three commonly recognized operations
are addition, deletion, and substitution. Maximizing the
LCS for two sequences is equivalent to minimizing an
edit distance function where the cost of addition and
cost of deletion are both equal to 1, and the cost of
substitution is equal to 2 [25]. For the other common
edit distance, the Levenshtein distance [15], the cost of
insertion, deletion and substitution are all equal to 1.

The LCS metric has an optimal substructure property,
which is the foundation of a well-known dynamic pro-
gramming algorithm [16]. Given two sequencesX and
Y , the algorithm constructs a two-dimensional tableL

of size lX by lY . An entry L(i, j) in the table gives
the length of the LCS between the firsti symbols of
X and the first j symbols of Y . More information
on the optimal substructure property and the dynamic
programming algorithm can be found in [16].

The time complexity of the algorithm isO(l2) (where
l is the average length of a sequence in the dataset),
which makes the algorithm computationally intensive for
long sequences. A vast amount of literature [28][29][30]

exists with algorithms that attempt to improve the run-
ning time for inputs with certain properties. A survey
of LCS algorithms by Bergroth et al. [31] divides such
algorithms into three groups and compares their results
empirically. The comparison turns up no clear winners.
We used a variation of the Hunt-Szymanski algorithm,
which remains the most popular group of LCS algo-
rithms, since it is relatively easy to implement. Details
related to the Hunt-Szymanski algorithm can be found
in [28].

IV. A NOMALY CHARACTERIZATION

We defineanomaly characterizationas the task of
identifying the reasons why a particular data point (se-
quence) was labeled as an anomaly. This is an essential
step if we have to meet our requirement of comprehensi-
bility. For data embedded in a vector space or following
a known statistical distribution anomaly characterization
can often be performed easily. For example, in a vector
space if a data point is considered anomalous it can be
because it has an abnormally high/low value along one
or more dimensions which can be discovered through
manual inspection. On the other hand, if we are using
a generative model such as an HMM, it is possible
to characterize an anomaly using the transition and
output matrices. However, when using discriminative
approaches based on a similarity measure it is often
difficult by inspection alone to determine what aspect of
the sequence makes it anomalous after a sequence has
been identified as anomalous. In cases where the data
set consists of relatively short sequences of say 10 to 15
symbols it may be possible to characterize a sequence
as anomalous based on manual analysis. However, as the
length of sequences increases this becomes increasingly
difficult. This is because most sequence clustering algo-
rithms treat the edit distance-based similarity measures
as a black box.

For Integrated System Health Management (ISHM)
applications in particular, it is necessary to know what
makes a particular sequence anomalous to enable diag-
nosis and possible recovery. Manual analysis can be time
prohibitive and may require significant domain expertise.

This section describes our approach to automatically
characterize anomalies within a given sequence. Our
system provides detailed information about the atypical
events inside the sequence. The non-ordinal nature of
the symbols in discrete sequences influences the kind of
anomalies that can be found in this type of data. We
classify the kind of anomalies that can be found in this
data into two categories, with a third case corresponding
to a composite of the other two categories:

5

1) Missing symbols: A symbol was expected at a
position in the sequence but was not present. In
terms of our domain problem, this corresponds to
situations where a pilot was expected to press a
switch at a certain point in the flight sequence, but
did not do so.

2) Excess symbols:A symbol was not expected at
a given position in the sequence but was present.
This corresponds to a case where a pilot presses a
switch but was not expected to press it given the
observed flight sequence.

In the third case a pilot presses the correct switches
with respect to the flight sequence but in the wrong order.
This case is covered by the above two cases as follows:
suppose that there are two switches,A andB, and switch
A is supposed to be pressed before switchB. However,
it could happen that a pilot pressesB beforeA. In such
a case, we can say thatB is missing from its location
after A and an excessB is present beforeA.

The approach we take to identify such anomalies
inside a sequence consists of the following steps: first,
we define anobjective functionF to help identify outlier
sequences. The value ofF for a given sequenceO is
a function that evaluates the similarity ofO with the
cluster to which it has been assigned. A reasonable
objective function is a weighted mean of the normal-
ized longest common subsequence score (nLCS) of the
outlier sequence with all the sequences in the cluster.
Alternatively, we construct a generative model for the
sequences in a cluster and deriveF from this model.

In the second step, we identify modifications (adding
or deleting symbols) in an anomalous sequence that
generate higher values of the objective function. We
use the termprofitable for such changes. That is, a
modification to a sequence is said to be profitable if it
increases the objective function score for the sequence.

A. Bayesian Model for the Objective Function

We construct a simple generative probabilistic model
for a cluster using a Bayesian Tree framework. We
assume that the probability of generation of the outlier
from each sequence is proportional to the normalized
LCS score between the sequence and the outlier. We
model each sequence in the cluster as being generated
from the centroid sequence with a certain probability.
The centroid sequence is a sequence identified from
within the cluster as most representative of the entire
cluster. The clustering step using CLARA provides as a
side-product a candidate centroid sequence. We use this
sequence as the centroid.

C =

S1 = S2 =

S3 =

O =

Fig. 1. A depiction of the Bayesian network used for the objective
function. The probability of an outlierO is dependent on the cluster
member sequencesSi, which in turn are dependent on the centroidC

of the cluster.

For a clusterZ, let C ∈ Z be the centroid,O ∈ Z be
the outlier we need to analyze for anomalies. Then let
Z ′ = {S1, S2, . . . , SN} be all the sequences inZ except
O. In this case, we want to maximize the probability
that O is generated fromC, that is to say,P (O|C). As
mentioned earlier, the length ofSi is represented asli.
Similarly, the length ofO is represented aslO and that
of C as lC .
Using the Bayesian Tree framework, we note that

P (O|C) =

N
∑

i=1

P (O|Si) · P (Si|C) (2)

This is the Bayesian Tree depicted in Figure 1.
AssumingP (O|Si) ∝ nLCS(O, Si) and P (Si|C) ∝
nLCS(C, Si), we obtain:

P (O|C) ∝
N

∑

i=1

nLCS(O, Si) · nLCS(C, Si) (3)

Hence, in the case of a Bayesian Tree based model for a
cluster, the objective function to be maximized is given
by:

F (O, Z ′) =

N
∑

i=1

nLCS(O, Si) · nLCS(C, Si)

=

N
∑

i=1

|LCS(O, Si)|√
lOli

· |LCS(Si, C)|√
lilC

=
1√
lOlC

N
∑

i=1

|LCS(O, Si)||LCS(Si, C)|
li

We can ignorelC as the length of the centroid is

6

constant.Hence, the objective function is given by:

F (O, Z ′) =
1√
lO

N
∑

i=1

|LCS(O, Si)||LCS(Si, C)|
li

(4)

In general, an objective function based on a Bayesian
Tree model is more effective when the cluster is large
and can be said to contain small sub-clusters because the
Bayes net model optimizes with respect to the sequences
most similar to the outlier. We now discuss another
objective function which may be used in place of the
Bayesian Tree model.

Given an outlier sequenceO and a clusterZ ′ = Z −
{O, C}, a weighted mean-based objective functionF̂

can be given by:

F̂ (O, Z ′) =
N

∑

i=1

αi · nLCS(O, Si) (5)

Here N is the number of sequences in the cluster.
The weightαi can be set as equal for all sequences,
or alternatively, it may be set as proportional to some
score (such as the nLCS score) of the sequence with the
centroid.

Expanding the value ofnLCS(O, Si), we get:

F̂ (O, Z ′) =
1√
lO

·
N

∑

i=1

αi ·
|LCS(O, Si)|√

li
(6)

The weighted mean-based objective function can offer
better performance when the clusters are small and
homogenous since it assumes that the outlier is approx-
imately equidistant from the cluster sequences.

B. Objective function: Discussion

The objective function̂F (O, Z ′) described in equation
(5) can be seen as a more general case of equation
(4). Our task now is to develop algorithms that will
identify changes in any outlier sequenceO, to maximize
its similarity F̂ (O, Z ′) to a cluster. Let us now consider
a special case: if we setαi = 1 for all sequences, this
problem becomes closely related to themedian string
problem.

The problem of finding the string that maximizes
the similarity (or minimizes the distance) to all the
sequences in a given set/cluster is known as the median
string problem [26][25]. It is an important problem in
areas such as bioinformatics and pattern recognition. It
is easy to see that the median string problem for nLCS
is at least as hard as the problem of finding the changes
to make to a sequenceO to maximizeF̂ (O, Z ′): if we
have an algorithm that can identify changes to a sequence

O that maximizeF̂ (O, Z ′), we can set allαi = 1 and
seedO with a dummy sequence of length 1, containing
a single character that does not exist in any of the other
sequences. When our algorithm discovers the additions
and deletions required, performing these operations on
O will give us the median string. Informally, we can say
that the problem of finding changes inO that maximize
F̂ (O, Z ′) and the problem of finding the median string
for a set of sequencesZ ′, are equivalent.

However, the median string problem is known to be
a difficult problem: the decision problem corresponding
to the median string problem has been shown to be NP-
complete for unbounded alphabets[27] and for bounded
alphabets [26] for the Levenshtein distance. While a
similar proof does not exist for the LCS metric or for
our nLCS metric, no fast polynomial time algorithm
is known to the best of our knowledge to optimize
this function for any popular distance measure. For
this reason, we are pessimistic that we could find an
algorithm to find an optimal solution to the function
F̂ (O, Z ′). Hence, we take the approach of developing
algorithms that do not try to find the global minimum
but that converge to a local minimum in bounded time.

V. A LGORITHMS FORANOMALY

CHARACTERIZATION

We now analyze the impact on the objective function
given different kinds of changes to the anomalous se-
quences. This analysis will help us find the changes that
will improve the objective function. The algorithms we
discuss identify changes that will improve the objective
function until it reaches a local maximum. The changes
discovered will point in the direction of the anomalies
in the sequence being analyzed. We focus on identifying
two kinds of changes:

1) Profitable deletions: These changes indicate the
non-essential symbols in the anomalous sequence.

2) Profitable additions: These changes point us to the
missing symbols in the anomalous sequence.

In our analysis below we use the Bayesian Tree based
objective functionF given in equation 4. The analysis
for the weighted-mean based objection functionF̂ in
equation 6 is very similar.

A. Identifying profitable deletions in an anomalous se-
quence

In order to compute the change in the objective
function F (O, Z ′) of an outlier/anomalous sequenceO

with a set of sequencesZ ′ and centroidC, if a symbolh

7

is removed from the sequence, we begin with the value
of F beforeh is removed. This function is given by:

F (O, Z ′) =
1√
lO

N
∑

i=1

|LCS(O, Si)||LCS(Si, C)|
li

(7)

Now remove a single symbolh from O. The change
would have the following impact:

• The length ofO will decrease by 1.
• The lengths ofLCS(O, Si), for which h is a part

of LCS(O, Si), will decrease by 1.
• The LCS lengths for all other sequences will remain

unchanged.

Let the value of the objective function that arises as a
result of the deletion ofh be represented byF ′(O, Z ′).
ThenF ′(O, Z ′) will be given by:

F ′(O, Z ′) =
1√

lO − 1

×[
∑

{Sj|h∈LCS(O,Sj)}

(|LCS(O, Sj)| − 1) · |LCS(Sj, C)|
lj

+
∑

{Sk|h/∈LCS(O,Sk)}

|LCS(O, Sk)| · |LCS(Sk, C)|
lk

]

=
1√

lO − 1
[

N
∑

i=1

|LCS(O, Si)||LCS(Si, C)|
li

−
∑

{Sj |h∈LCS(O,Sj)}

|LCS(Sj , C)|
lj

]

Let bh =
∑

{Sj |h∈LCS(O,Sj)}
LCS(Sj,C)

lj
. Substitutingbh

and F̂ (O, Z) in the above equation:

F ′(O, Z ′) =
1√

lO − 1
(
√

lO · F (O, Z ′) − bh) (8)

It can be shown that, givenk symbols at different
locations, all with same value ofbh = b:

F ′(O, Z ′) =
1√

lO − k
· (

√

lO · F (O, Z ′) − k · b) (9)

A simple algorithm to find all profitable deletions
from an anomalous sequences can be seen in Figure
2. Step 2 of the algorithm calculates the objective
function F for the outlier/anomalous sequenceO. It
also calculatesbh (defined above) for each symbol. The
smaller the value ofbh for a symbolh, the greater the
probability that removing it will increase the value of
F . Hence the algorithm searches forbmin, the smallest
value for bh in each iteration, and calculates whether
deleting the symbols withbh = bmin shall be profitable

or not. If the deletion is found to be profitable, the
deletion is ‘accepted’, that is, it is assumed that the
deletion is made and the values ofF andlO are updated
accordingly.

Algorithm Complexity:For simplicity, let the length of
all the sequences in the cluster bel. Let the number of
sequences ben. Step 2 compares the outlier sequence
with all the sequences in the cluster and has a worst-
case complexity ofO(nl2). Here O(l2) is the worst-
case time taken to compare two sequences. Since the
number of symbols that can be removed from the outlier
sequences is bound byl, the upper bound on the number
of times steps 3 and 4 are executed isl. The time taken
by these steps is also bounded byO(l). Hence the overall
complexity of these steps isO(l2) and the complexity
of the algorithm is given byO(nl2).

B. Detecting profitable additions in an anomalous se-
quence

We start with a simple example to explain our ap-
proach to calculating profitable additions. We focus only
on improving the LCS score (ignoring nLCS for now)
and also assume all sequences are weighed equally irre-
spective of length and distance from centroid. Suppose
we are analyzing an outlier sequenceO = ABDE and
we are comparing it to a single sequenceS1 = AFGDE

to identify what additions we can make toO to improve
our similarity with S1. The LCS betweenO and S1

is ADE. We can insert characters at five locations in
ABDE: immediately before A, B, D, or E, or imme-
diately after E. Two possible profitable additions areF

andG both of which can be inserted immediately before
eitherB or D. Note that becauseB is not part of the LCS
betweenO and S1, any character that can be inserted
beforeD can also be inserted beforeB. Now suppose
there is another sequence in the clusterS2 = AFDE.
The LCS of this sequence withO is ADE. The only
profitable additions toO with respect toS2 areF before
B, or F beforeD. HenceF beforeB or D is a more
profitable addition thanG beforeB or D because the
insertion ofF improves the score with respect to both
S1 andS2.

We need to introduce some notation to formalize this
intuition. For any sequenceSi, we refer to thepth

character in the sequence asSi(p). For a characterSi(p)
that is part of the LCS betweenSi andSj , we define the
matchof p in Sj written asMSj

Si
(p). This is the character

in Sj that was matched with the character at locationp

in Si as part of the LCS computation. For example, let
S1 = ABCED and S2 = PBDQ. The LCS between

8

Input: Outlier sequenceO, centroid sequenceC
and sequencesZ ′ = {S1, . . . , SN}
Output:D, the list of profitable deletions inO,
in decreasing order of importance.
Step 1: Declare array b of lengthlO.
b[1 . . . lO] = 0.

Step 2: calculateF (O, Z ′), andbh.
for i:= 1 to n

Get the LCS ofO with Si.
For eachh ∈ LCS(O, Si),

Setb[h] = b[h] + |LCS(C,Si)|
li

.

SetF = F + |LCS(O, Si)| · |LCS(C,Si)|
li
√

lO
.

Step 3: Repeat:
a)Find the next symbol to be replaced.
Find bmin = min(b).
Find H = {h|bh = bmin}.
Setk = |H |.

b)Calculate new value of F.
SetFold = F .
F = 1√

lO−k
· (
√

lO · F − k · bmin)
If F > Fold

Add h ∈ H to D.
Setb[h] = max+1, for allh ∈ H .
SetO = O − H .
Set lO = lO − k.

until F ≤ Fold.

Step 4. All profitable deletions are stored inD.
ReturnD.

Fig. 2. Algorithm to Detect Profitable Deletions

these two sequences is given byBD. Then,MS2

S1
(2) = 2,

M
S1

S2
(3) = 5. For characters that do not have a match in

the other sequence, we set the match value to0. In the
above example, we sayMS2

S1
(3) = 0. We also define

M
Sj

Si
(li + 1) = lj + 1.

We define thelower neighborhoodof Si(p) with Sj

as the match of the largestp′ < p such thatSi(p
′) has a

nonzero match withSj. If there is no such character, we
set the lower neighborhood to0. In the example above,
the lower neighborhood forS1(3) with respect toS2

is 2. We write this asλS2

S1
(3) = 2. Also, λS2

S1
(2) = 0,

as there is no character beforeS1(2) that matches with
a character inS2. Formally we can define the lower
neighborhood as:

λ
Sj

Si
(p) = max

1≤p′<p
M

Sj

Si
(p′) (10)

We next define theupper neighboorhood. For a char-
acterSi(p) that has a nonzero match withSj (MSj

Si
(p) 6=

0) we define the upper neighborhood as the match value.
If M

Sj

Si
(p) = 0 we define it as the match of the smallest

p′ > p such thatMSj

Si
(p′) 6= 0 that is Si(p

′) has a
nonzero match withSj . Formally we write this as:

υ
Sj

Si
(p) = M

Sj

Si
(p), M

Sj

Si
(p) 6= 0

= min
p<p′≤li+1

M
Sj

Si
(p′), M

Sj

Si
(p) = 0 (11)

For a characterSi(p) we call the closed interval
between its lower and upper neighborhood with respect
to Sj as its neighborhoodin Sj . We write this as
η

Sj

Si
(p) = (λ

Sj

Si
(p), υ

Sj

Si
(p)). We say that a characteraq

is in the neighborhood ofSi(p), with respect toSj , if
there exists anr such thatSj(r) = aq, and λ

Sj

Si
(p) ≤

r ≤ υ
Sj

Si
(p). That is, there is a locationr in η

Sj

Si
(p) such

that Sj(r) = aq. We write this asaq ∈ η
Sj

Si
(p). For two

sequencesSi and Sj , for a characterSi(p), inserting
any character in its neighborhood withSj , into Si, will
increase its LCS withSj .

We return to our task of discovering profitable addi-
tions in an outlier sequenceO with respect to a set of
sequencesZ ′. We now know that inserting any character
aq beforeO(p) will improve the LCS with a sequence
Si if and only if aq ∈ ηSi

O (p). The resultant change in
the nLCS over all sequencesZ ′ = {S1, S2, . . . , Sn} can
be calculated for all pairs ofO(p) andaq. We write this
as b̂pq, and it is given by the following expression:

b̂pq =
∑

Si|aq∈η
Si
O

(p)

|LCS(Si, C)|
li

(12)

An analysis similar to the one used to derive equation
(8) shows that adding a symbolaq, beforeO(p) changes
the objective functionF (O, Z ′) as follows:

F ′(O, Z ′) =
1√

lO + 1
· (

√

lO · F (O, Z ′) + b̂pq) (13)

Similarly, addingk symbols to a sequence at various
locations, such that allk symbols have the same value
of b̂pq = b̂, will give changeF (O, Z ′) as follows:

F ′(O, Z ′) =
1√

lO + k
· (

√

lO · F (O, Z ′) + k · b̂ (14)

We can now construct a two dimensional matrixb̂,

9

with (lO + 1) rows andM columns (M is the alphabet
size, A = {a1, a2, . . . , aM}). b̂pq represents the
improvement in score as a result of inserting character
aq immediately before the character at locationp in
O (except for the last row, which contains scores for
insertions immediately after the last character). We can
then construct an algorithm that calculatesb̂pq for all
values ofp and q, and then selects the character with
the best value of̂bpq at each step. Such an algorithm is
given in Figure 3.

Algorithm Complexity:
Again, let the length of all the sequences in the cluster
be l, and the number of sequences ben, and the the total
number of unique characters beM . The comparison
step and the construction ofb will take O(nl2) as
discussed for the previous algorithm. The next step
requires searching for the largest value inb an array
of size M × l. This step can be sped up by sorting
the array in descending order, which can be done in
time O(Ml · log(Ml)). Hence the overall complexity is
O(n · l2 + Ml · log(Ml)).

C. Reconstructing Missing Symbol Sequences

The algorithm given in Figure 3 can only detect the
symbols that should be inserted between two symbols
in a sequence, but does not detect the order in which
they might be inserted. For example, the algorithm might
say that symbolsD and E should be inserted between
symbolsA and C in a given outlier sequence, but not
whetherDE or ED should be inserted.

The algorithm in Figure 4 reconstructs the missing
sequence of symbols in the gaps in the original
sequence. Essentially the algorithm in Figure 4 accepts
the most profitable addition suggested by the algorithm
to detect profitable additions (Figure 3) at each step
and updates the current outlier sequence accordingly.
In this way the algorithm is able to make reasonable
suggestions about the likely sequence of the missing
symbols identified by algorithm 3. Our empirical
experience shows that the algorithm provides reasonable
reconstructions.

Algorithm Complexity:
We can perform a worst case complexity analysis of the
algorithm as follows: let the length of all the sequences
in the cluster bel and the number of sequences ben.
Let the total number of unique characters bec. The
complexity of Step 2 as calculated earlier is given
by O(nl2). Since any character to be added at any
location in the outlier sequence in Step 5 has to occur

Input: Outlier sequenceO and centroidC, and
sequencesZ ′ = {S1, . . . , SN}
Output:D, the list of profitable additions toO.
in decreasing order of importance.

Step 1: Declare arraŷb of size lO by M .
Setb[1 . . . lO][1 . . .M] = 0
Set l′ = lO, U [1 . . .M] = 0.

Step 2: CalculateF (O, Z ′), and b̂pq for O.
for i = 1 to n

Get the LCS ofO with Si.
SetF = F + |LCS(O, Si)| · |LCS(C,Si)|

li
√

lO
.

for p = lO to 1
if M

Si

O (p) 6= 0
if aq ∈ ηSi

O

U[q] = |LCS(C,Si)|
li

.
else

U[q] = 0.
b[p][1 . . .M] = b[p][1 . . .M] + U [1 . . .M].

Step 3: Repeat:
a)Find the next set of missing symbols.
Find bmax = max(b).
Find H = all (p, q) pairs s.t.b[p][q] = bmax.
Setk = |H |.

b)Calculate new value ofF using eq. 9.
SetFold = F .
F = 1√

l′+k
· (
√

l′ · F + k · b̂)
If F > Fold

Add (p, q) ∈ H to D.
Setb[p][q] = 0∀(p, q) ∈ H .
Set l′ = l′ + k.

until F ≤ Fold.

Step 4. All missing symbols and their locations
are stored inD.
ReturnD.

Fig. 3. Algorithm to Detect Profitable Additions

at least once in any one of the sequencesS1 . . . Sn, the
maximum number of such characters is bounded by
O(nl). Thus the maximum number of iterations steps
2-5 shall be executed is given byO(nl) and the overall
complexity can be described asO(n2l3). However, in
our experiments, we found that the number of characters
that met the insertion criterion of Step2.d was usually
of the orderO(l), and notO(nl). Hence, the running
time of the algorithm was usually of the orderO(nl3).

10

Input: OutlierO,centroidC, and
Z ′ = {S1, . . . , SN}, and
A = {a1, . . . , aM}.
Output: The subsequences missing inO.

Step 1: SetO′ = O.

Step 2: Repeat:
a)Run Step 2 of the profitable
additions algorithm in Figure 3
to get values ofF (O, Z ′) and the arraŷb.

b)Find bmax = (p, q), the location
in array b with the maximum value.

c)Calculate the new value of F.
SetFold = F .
F = 1√

|O|+k
· (

√

|O| · F + k · b)

d) If F < Fold, updateO′ by inserting
aq beforeO(p).

until F ≥ Fold.

Step 3: CompareO andO′, to get the newly
inserted subsequences.

Fig. 4. Algorithm to Reconstruct Missing Sequences

VI. EXPERIMENTAL RESULTS

We ran our experiments on two sets of data. The first
is a synthetic data set which we use to demonstrate the
advantages sequenceMiner has over HMMs. The second
is a real data set consisting of switch activations for a
set of airline flights which we use to demonstrate the
efficacy of sequenceMiner in a real-life scenario.

A. Synthetic Data Experiments

1) Setup:We generate synthetic data containing four
clusters of sequences. Each cluster is defined by a
seed sequence that is a random permutation of 100
unique symbols. The seed sequences are then mutated
slightly to provide some variation. Mutations include
the insertion, deletion, or the transposition of symbols
in the sequence. We use four different degrees of mu-
tation: 5%, 10%, 20%, and 30%. Here the percentages
represent the number of mutations (i.e. single deletions,
insertions, transpositions) divided by the length of the
seed sequence. Each cluster contains 500 sequences, and
there are 125 sequences for each degree of mutation. In
this data set, we also include one outlier sequence which

is the reversal of one of the seed sequences. The final
size of the data set is therefore 2001 sequences.

2) Efficacy of sequenceMiner:When we run this syn-
thetic data through sequenceMiner it is able to discover
each of the four clusters. SequenceMiner does not insert
subsequences into sequences incorrectly. As expected,
sequenceMiner gives lower scores to those sequences
with a greater amount of mutation, since they are more
anomalous. The results are summarized in the table in
Figure 5.

By looking at the mean and standard deviation of the
sequence scores in Figure 5 for each cluster and for each
degree of mutation, we see that there is a significant dif-
ference in anomaly scores between the different degrees
of mutation, and that the scores are consistent across
the clusters. We also calculate the anomaly score for the
outlier point to be 0.18, showing that sequenceMiner can
easily distinguish a distinct outlier in the data set.

3) Comparison with HMMs:Next, we run Hidden
Markov Models (HMMs) [32] on the same data set. We
run two sets of experiments for the HMMs. HMMs have
no way of clustering the sequences prior to learning the
model. Thus, in the first set of experiments we simply
supply the HMM learner with all 2001 points. As a
result we have a single HMM modeling the entire data
set. In the second set of experiments, we divide the
data set into four subsets corresponding to the clusters
discovered by sequenceMiner. We then generate four
HMMs, each corresponding to a specific cluster. For
both sets of experiments, we varied the number of
states in the HMM between 3 and 48, and perform five
different runs for each set of parameters. We use at most
30 iterations while training, though in some cases the
algorithm converges in fewer iterations. We use the log
likelihood of each sequence as the anomaly score for a
sequence with smaller values indicating more anomalous
sequences.

We would hope that the outlier sequence in our
synthetic data set would be marked as the most abnormal
since it is the reversal of a seed sequence. However, in
our experiments using a single HMM to model the entire
data set the outlier is only marked consistently ((that is
to say, for all 5 runs for a given set of parameters) as
the most abnormal when there are 32 or more states in
the HMM. When we use an HMM for each cluster, since
each of the HMMs is trained on a relatively homogenous
cluster, the outlier is consistently marked as the most
abnormal with respect to all 4 HMMs when there are at
least 12 states in the HMMs.

4) Drawbacks of Hidden Markov Models:We noted
in section I that we require that our system meet five con-
straints: it must find auniquesolution, it must provide

11

Cluster 5% 10% 20% 30%
mean std. dev. mean std. dev. mean std. dev. mean std. dev.

1 0.958 0.0156 0.926 0.0205 0.862 0.0272 0.806 0.0278
2 0.954 0.0148 0.924 0.0195 0.862 0.0246 0.804 0.0310
3 0.958 0.0175 0.925 0.0224 0.863 0.0264 0.808 0.0303
4 0.943 0.0151 0.914 0.0198 0.850 0.0253 0.796 0.0313

Fig. 5. Statistics for the outlier scores for each cluster and each level of mutation.

-950000

-900000

-850000

-800000

-750000

-700000

-650000

 0 5 10 15 20 25 30

L
o
g
 L

ik
e
li
h
o
o
d
 o

f
D

a
ta

Number of Iterations

Number of Iterations versus Average Log Likelihood (No Clustering)

3 States
4 states
5 states
6 states
7 states
8 states
9 states

10 states
12 states
14 states
16 states
18 states
20 states
24 states
28 states
32 states
36 states
40 states
48 states

-240000

-220000

-200000

-180000

-160000

-140000

-120000

-100000

 0 5 10 15 20 25 30

L
o
g
 L

ik
e
li
h
o
o
d
 o

f
D

a
ta

Number of Iterations

Number of Iterations versus Average Log Likelihood (Cluster One)

3 States
4 states
5 states
6 states
7 states
8 states
9 states

10 states
12 states
14 states
16 states
18 states
20 states
24 states
28 states
32 states
36 states
40 states
48 states

Fig. 6. Plots of the number of iterations used for training anHMM versus average log likelihood of the data, for both the HMM built with
no clustering, and the HMM built from cluster one.

a repeatablesolution, it must provide acomprehensible
solution, it must berobust, and it must bescalable. Here
we present results from our experiments showing that
HMMs do not meet these constraints.

In Figure 6 we plot the number of iterations used to
train an HMM versus the resulting average log likelihood
of the data. This plot is shown for the HMM built using
all sequences in the entire data set and for the HMM
built using the sequences that fell into the first cluster
according to sequenceMiner. Please note that the results
for clusters two through four are similar to those for
cluster one and so are not shown here. We can draw
several conclusions from these plots.

First of all, using a larger number of states fits the data
better, but such a large number of states makes the model
more difficult to understand since the potential number
of transitions grows as the square of the number of states.
Such large and unwieldy models violate thecomprehen-
sibility constraint. Second, while using a larger number
of states causes the average log likelihood to increase it

also takes longer for the algorithm to converge as can be
seen in Figure 6. This violates thescalabilityconstraint.
In this case, the number of iterations to convergence
is a measure of scalability. Finally these plots contain
multiple plateaus especially for larger numbers of states.
The first plateau occurs very early on, after just 2 or
3 iterations, and then another occurs after 15 to 20
iterations, making it difficult to determine how many
iterations are necessary and violating therobustness
constraint.

In Figure 7 we plot the number of states used for
the HMMs versus the average log likelihood of the data
along with error bars signifying the amount of variation
across the five runs that were performed for each state.
The fact that such variance in the average log likelihood
exists shows that all of the models are not equal, and
change from run to run, violating therepeatabilityand
uniquenessconstraints. Also, even with up to 48 states,
there is no distinct plateau. This indicates that using
a greater number of states will not further refine the

12

-460

-440

-420

-400

-380

-360

-340

-320

 0 5 10 15 20 25 30 35 40 45 50

Lo
g

Li
ke

lih
oo

d
of

 D
at

a

Number of States

Number of States versus Average Log Likelihood (No Clustering)

-450

-400

-350

-300

-250

-200

 0 5 10 15 20 25 30 35 40 45 50

Lo
g

Li
ke

lih
oo

d
of

 D
at

a

Number of States

Number of States versus Average Log Likelihood (Cluster One)

Fig. 7. Plots of the number of states used for training an HMM versus average log likelihood of the data, for both the HMM built with no
clustering, and the HMM built from cluster one.

model making it difficult to determine a priori what
values one should use for the parameters. This violates
the robustnessconstraint.

In Figure 8 we plot the number of states versus vari-
ance of the average log likelihood of the data across five
runs (in essence, magnitude of the error bars in Figure
7). These plots show the variance across the 5 runs for
increasing numbers of states. In some cases (such as for
cluster one), it appears that variance decreases with a
larger number of states, which infers that there may be
an optimum number of states where the models will fit
the data well, and there will be little difference between
these models. However, this is not true in all cases, and
there is still a lot of variance in the variance, violating
the robustnessand repeatabliltyconstraints.

It is worth noting that HMMs were given an “unfair”
advantage by using the clusters already found by se-
quenceMiner to train the HMMs. Since sequenceMiner
finds outliers as a byproduct of clustering anyway, one
would already know the outliers before starting to train
the HMMs on the clustered data. Even with these ad-
vantages, HMMs are still more cumbersome to use and
less reliable than sequenceMiner.

B. Real Data

The clustering and outlier analysis algorithms were
used on a data set consisting of the landing phase
sequence information for 7400 flights. The sequence
data set consisted of 7400 distinct sequences, varying
widely in length from 800 to over 9000. The average
sequence length was approximately 1500. The number of
distinct symbolsσ was around 1100. The sequenceMiner
algorithms processed 7400 flights in about 6 minutes on
a standard Pentium 4 computer with 1 GB of RAM, thus
indicating thescalability of the algorithm. This data set

is representative of the size of data that are currently
available to us. The performance of the algorithm is
appropriate given the computational complexity derived
earlier.

To eliminate variation in the sequences due to different
landing procedures at different airports and different
sequences due to different makes of aircraft, we chose
to analyze the data for identical make-and-model aircraft
landing at the same location. This reduced the number of
flights under analysis from 7400 to about 2200 flights.

We submitted the resulting data to sequenceMiner
to discover the top flights with the most anomalous
behavior. We consulted with a 747 pilot who is famil-
iar with aircraft landing procedures and asked him to
analyze the 13 most anomalous flights. Based on his
post-hoc analysis 5 flights were discovered to contain
bad data, 3 were considered normal flights, and 5 were
considered to have operationally significant anomalies
that have distinct safety implications. We show two
of sequenceMiner’s operationally significant discoveries
here.

Figure 9 shows the altitude and airspeed of a real
commercial jet liner as a function of time to landing. The
vertical bars indicate the locations at which an anomaly
was discovered by sequenceMiner. In the case of this
flight, sequenceMiner discovers that the engine igniter
switch is pressed at inappropriate locations in the landing
sequence. In fact, when we discussed this result with
our subject matter expert, he indicated that the flight
was quite anomalous because the igniter is usually not
pressed during the landing phase of the aircraft. Notice
that the switch continues to be depressed even a few
minutes before landing.

Figure 10 shows another operationally significant dis-
covery of sequenceMiner: pilot mode-confusion. Mode

13

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

V
ar

ia
nc

e

Number of States

Number of States versus Variance of Log Likelihood (No Clustering)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50

V
ar

ia
nc

e

Number of States

Number of States versus Variance of Log Likelihood (Cluster One)

Fig. 8. Plots of the number of states used for training an HMM versus the variance of the average log likelihood of the data across five runs,
for both the HMM built with no clustering, and the HMM built from cluster one.

confusion is a human-factors term that describes the
situation in which an airline pilot is not fully aware
of the configuration of the autopilot. In this case, he
or she switches the mode of the autopilot from one
setting to another, and tests the behavior of the airplane
in order to determine the state of the autopilot. One of the
primary motivations for developing sequenceMiner was
to discover such events. We did not, however, design
sequenceMiner to discover only these types of events.
It is a general purpose anomaly discovery algorithm.
In this figure, we see the pilot pressing the autopilot
switch numerous times 16 minutes before landing and
then again 4 minutes and then 1 minute before landing.
Our subject matter expert thinks that this was indeed a
case of pilot mode-confusion and indicates that it is an
operationally significant event.

−20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

2000

4000

6000

8000

10000

Time (minutes)

A
lti

tu
de

 (
fe

et
)

−20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

50

100

150

200

Time (minutes)

A
irs

pe
ed

 (
kn

ot
s)

Fig. 9. This graph shows the altitude (top panel) and the airspeed
(bottom panel) of an anomalous flight as discovered by sequenceMiner.
The vertical bars indicate the times at which sequenceMinerdiscovered
an anomalous event, in this case, the depression of the engine igniter
switch. Consultation with a 747 pilot indicated that this was an
operationally significant anomaly.

−20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

0.5

1

1.5

2

2.5

3

x 10
4

Time (minutes)

A
lti

tu
d

e
 (

fe
e

t)

−20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

50

100

150

200

250

300

Time (minutes)

A
ir
sp

e
e

d
 (

kn
o

ts
)

Fig. 10. This graph shows the altitude (top panel) and the airspeed
(bottom panel) of an anomalous flight as discovered by sequenceMiner.
The vertical bars indicate the times at which sequenceMinerdiscovered
an anomalous event, in this case, the depression of the auto-pilot
switch. Consultation with a 747 pilot indicated that this was an
operationally significant anomaly due to the fact the pattern in which
this switch is pressed may indicate pilot mode-confusion. Because of
the fact that the switches were depressed numerous times in arow, the
bars are overlapping in the time scale of minutes.

VII. C ONCLUSIONS

This paper describes a system called sequenceMiner,
which is designed with the aim of detecting anomalies
in discrete symbol sequences. It does so by clustering
sequences using the length of the longest common sub-
sequence (LCS) as the similarity measure. We presented
algorithms, based on a Bayesian model of a sequence
cluster, that detect anomalies inside sequences. In do-
ing this, we move beyond what most current anomaly
detection systems achieve by not only predicting which
sequences are anomalous, but by providing explanations
as to why these particular sequences are anomalous.

14

We demonstrated that the algorithm discovers opera-
tionally significant safety events in real-world data from
commercial aircraft. One of the primary motivations for
developing sequenceMiner was to discover such events.
We did not, however, design sequenceMiner to discover
only these types of events. Our approach is general
and not restricted in any way to a domain, and these
algorithms can be of interest in other areas such as
anomaly detection and event mining.

ACKNOWLEDGMENTS

The authors thank the NASA Aviation Safety In-
tegrated Vehicle Health Management (IVHM) project
for support for this research. The authors thank Dr.
Irving C. Statler, Captain Alan Cirino, Captain Bob
Lawrence, Captain Bob Lynch, and Mr. Loren Rosenthal
for very helpful comments and suggestions. The authors
are grateful to the reviewers for their comments.

REFERENCES

[1] A. N. Srivastava, “Discovering System Health Anomaliesusing
Data Mining Techniques”, inProc. 2005 Joint Army Navy NASA
Airforce Conference on Propulsion.

[2] K. Sequeira and M. Zaki, “ADMIT: Anomaly based Data
Mining for Intrusions”, in Proc. 8th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, 2002.

[3] Y. Xiao and M. Dunham, “Interactive Clustering for Transaction
Data”, in Proc. 3rd Int. Conf. Data Warehousing and Knowledge
Discovery, pp.121-130, 2001.

[4] F. Figueroa, R. Holland, J. Schmalzel and D. Duncavage,
“Integrated system health management (ISHM): systematic
capability implementation”, inSensors Applications Symp.,
2006, Proc. 2006 IEEE , pp. 202-206, 2006.

[5] A.M. Manning, A. Brass, C.A. Goble and J.A. Keane,
“Clustering Techniques in Biological Sequence Analysis”,in
Proc. 1st European Symp. Principles of Data Mining and
Knowledge Discovery, pp.315-322, 1997.

[6] J. Klema, L. Novakova, F. Karel, O. Stepankova and F. Zelezny,
“Sequential Data Mining: A Comparative Case Study in
Development of Atherosclerosis Risk Factors”, inIEEE Trans.
Syst. Man and Cybern. C Appl. Rev., Vol 38, No. 1, pp. 3-15,
2008.

[7] S. Budalakoti, A. Srivastava and R. Akella, “Discovering
Atypical Flights in Sequences of Discrete Flight Parameters”, in
2006 IEEE Aerospace Conf., pp. 1-8.

[8] B. Hay, K Vanhoof and G. Wetsr, “Clustering navigation patterns
on a Website using a sequence alignment method”, inProc. 17th
Int. Joint Conf. Artificial Intell.,Seattle, Washington, USA, 2001.

[9] C. Daw, C. Finney and E. Tracy, “A Review of Symbolic Analysis
of Experimental Data”, inReview Scientific Instruments, Vol.
74, No. 2, pp. 915-930, 2003.

[10] J. Ghosh, “Scalable clustering methods for data mining”, in
Handbook of Data Mining, Lawrence Erlbaum, pp. 247–277,
2003.

[11] L.R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition”, inProc. IEEE, 77(2), pp.
257–286, Feb. 1989.

[12] L.R. Rabiner, B. H. Juang, S. E. Levinson, and M. M.
Sondhi, “Some properties of continuous hidden Markov model
representations”, inAT&T Technical Journal, vol. 64, no. 6, pp.
257-286, July-Aug. 1985.

[13] C. Warrender, S. Forrest and B. Pearlmutter, “Detecting
Intrusions Using System Calls: Alternative Data Models”, in
IEEE Symp. Security and Privacy, 1999.

[14] A. Banerjee and J. Ghosh, “Clickstream clustering using
weighted longest common Subsequences”, inProc. Workshop
on Web Mining, SIAM Conf. Data Mining, pp. 33-40, April 2001.

[15] V. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals”, inSov. Phys. Dokl. 10, 8, 707710..

[16] T. Cormen, C. Leiserson, R. Rivest and C. Stein,Introduction
to algorithms. Cambridge, MA: MIT Press, 2nd edition, 2001.

[17] H. Kawaji, Y. Yamaguchi, H. Matsuda, and A. Hashimoto, “A
graph-based clustering method for a large set of sequences using
a graph partitioning algorithm”, inGenome Informatics, vol. 12,
pp. 93-102, 2001.

[18] V. Guralnik and G. Karypis, ”A Scalable Algorithm for
Clustering Sequential Data”, in1st IEEE Conf. on Data Mining,
pp. 179-186, 2001.

[19] B. Szymanski and Y. Zhang, “Recursive Data Mining for
Masquerade Detection and Author Identification”, inProc. 5th
Annual IEEE Sys. Man Cybern. Inform. Assurance Workshop,
pp. 424-431, 2004.

[20] P.F. Evangelista, P. Bonnisone, M.J. Embrechts and B.K.
Szymanski, “Fuzzy ROC Curves for the 1 Class SVM:
Application to Intrusion Detection”, in13th European Symp.
Artificial Neural Networks, pp. 345-350, 2005.

[21] L. Kaufman and P.J. Rousseeuw,Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley and Sons, Inc.,
New York (1990).

[22] R. Ng and J. Han, “Clarans: A method for clustering objects for
spatial data mining”, inIEEE Trans. Knowledge and Data Eng.,
14(5), 2002.

[23] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases”, in
Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining,
pp. 226-231, 1996.

[24] M. Breunig, H.-P. Kriegel, R. Ng and J. Sander, “LOF:
Identifying density-based local outliers”,Proc. ACM SIGMOD
Int. Conf. Manage. Data, pp. 93-104,2000.

[25] D. Gusfield, Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, 1997.

[26] F. Nicolas and E. Rivals, “Hardness results for the center and
median string problems under the weighted and unweighted edit

15

distances”, inSpecial Issue on Combinatorial Pattern Matching
(CPM), Journal Discrete Algorithms, Vol. 3, Issues 2-4, pp.
390-415, June 2005

[27] C. de la Higuera and F. Casacuberta, “Topology of strings:
Median string is NP-complete”, inTheoretical Computer
Science, Volume 230, Issues 1-2, pp. 39-48,2000.

[28] J.W. Hunt and T.G. Szymanski, “A Fast Algorithm for Computing
Longest Common Subsequences”, inCommunications of the
ACM, Vol. 20, Issue 5, pp. 350 - 353, May 1977.

[29] D.S. Hirschberg, “Algorithms for the Longest Common
Subsequence Problem”, inJ. ACM, Volume 24, Issue 4, pp. 664
- 675, Oct. 1977.

[30] D.S. Hirschberg, “A Linear Space Algorithm for computing
Maximal Common Subsequences”, inCommun. ACM, Vol.
18,Issue 6, pp. 341 - 343, June 1975.

[31] L. Bergroth, H. Hakonen and T. Raita, “A Survey of Longest
Common Subsequence Algorithms”,Proc. 7th Int. Symp. String
Processing and Inform. Retrieval(SPIRE), pp.39-48, 2000.

[32] K. Murphy, HMM Toolbox for Matlab, [Online]. Available:
http://www.cs.ubc.ca/ murphyk.

16

